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Abstract

Using molecular dynamics (MD) simulations, we determine the composition dependence of the self-diffusivity and transport diffusivity
of a methane/ethane mixture at high pressure. The transport diffusivity is generated from the self-diffusivities using the Darken equation. We
perform a careful analysis of the molecular dynamics simulations and show that it is possible to reproduce the results in the microcanonical,
canonical, and isobaric–isothermal ensembles. We demonstrate that in order to capture the sensitive dependence of the diffusivities on
composition, it is necessary to run simulations with larger systems and for longer durations than is typical. We report the trends in
the diffusivities as a function of composition, temperature, pressure, and density. We modify an existing empirical correlation, which
when combined with a corresponding states chart, is capable of quantitatively reproducing the simulated diffusivity dependence on
composition, temperature, pressure, and density. Finally, we quantify the effect that the choice of equation of state (EOS) used to evaluate
the thermodynamic factor in the Darken equation has on the transport diffusivity.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The estimation of diffusivities using theoretical, exper-
imental, and simulation approaches has been of practical
interest for many decades. Kinetic theory can predict the
self-diffusivity of pure (single-component) dilute gases
quantitatively[1]. It can also predict the self-diffusivity of
pure dense fluids quantitatively, given that values of the col-
lision integral are available. Many empirical correlations to
determine the self-diffusivity as a function of temperature,
pressure, and molecular weight have also been developed
[2,3]. Additionally, plots based on corresponding states,
which are fitted to experimental and simulation data, can
predict self-diffusivities of dense fluids semi-quantitatively
[3]. However, for many systems there are no theories or
correlations that can accurately predict the self-diffusivity.
Frequently, the best and sometimes the only recourse is
to turn to experiment. Typically in the determination of
self-diffusivities, the experiments fall into two categories:
laboratory experiments and computer simulations. We clas-
sify computer simulations as a type of experiment, since
the only theoretical concepts that necessarily feed into the
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simulations are Newton’s second law and the choice of a
force field to describe molecular interactions.

Before we can continue our introduction, we must distin-
guish between self-diffusivities and transport diffusivities.
We provide a qualitative description here and a mathemat-
ical definition later. A self-diffusivity is a measure of the
mobility of fluid molecules in the absence of a driving force
for diffusion, e.g. a composition gradient. Self-diffusivities
arise due to the Brownian (random-walk) motion of the
molecules. Self-diffusivities are defined for pure fluids as
well as for each component in a mixture.

Transport diffusivities, also known as Fick or Fickian dif-
fusivities, appear in Fick’s law. They relate a mass or mole
flux to a driving force, such as a gradient in the concentration
of a particular species. Transport diffusivities are typically
not defined for pure fluids. For a multicomponent fluid con-
taining nc components, the transport diffusivity is typically
represented as annc × nc matrix, although not all of the el-
ements of this matrix are independent. Transformations of
this matrix are possible, generally to an (nc − 1)×(nc −
1) matrix, where each element of the upper triangular com-
ponent of the matrix is independent. Transport diffusivities
arise due to gradients in the system.

When one chooses to evaluate Fick’s law, one re-
quires transport diffusivities rather than self-diffusivities. In
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addition to self-diffusivities, kinetic theory can also predict
transport diffusivities. It is easy to use kinetic theory to
predict the transport diffusivities of low-pressure gases and
substantially more difficult to predict them for dense fluids.
Empirical correlations and corresponding-states plots, while
intended for self-diffusivities of pure fluids, have also been
modified to estimate transport diffusivities, at least for bi-
nary fluids. However, these modifications do not predict the
transport diffusivity (or the self-diffusivity) as a function of
the composition of the mixture. In other words, there is no
dependence of the self-diffusivities and transport diffusivity
on mole fractions.

In this work, we employ molecular dynamics (MD)
simulations to estimate the self-diffusivities and transport-
diffusivities of a high pressure binary mixture of methane
and ethane. We specifically determine the composition
dependence of the diffusivities. We describe how exist-
ing correlations and charts can be easily modified to give
quantitative agreement with simulation.

In Section 2, we provide a review of the pertinent lit-
erature. InSection 3, we provide a detailed discussion of
our simulation techniques, including our efforts to minimize
statistical error. InSection 4, we present the results of our
simulations. We also test the validity of the modified corre-
lations, we have developed. Finally, inSection 5, we present
our conclusions.

2. Background

2.1. Simulation

2.1.1. Self-diffusivities from simulation
It is a standard procedure to estimate self-diffusivities

in pure components or mixtures using equilibrium molecu-
lar dynamics (EMD) simulations[4–6]. One can use either
of two equivalent methods to obtain a self-diffusivity for
each component in the mixture. The first method is to use
Einstein’s relation, which relates the mean square displace-
ment to the observation time via

Dself,� = 1

2d
lim
τ→∞

1

τ
〈[r�̄,i

(t + τ)− r�̄,i
(t)]2〉 (1)

whereDself,� is the self-diffusivity of component�, d the
dimensionality of the system,τ the observation time, and
r�̄,i

is the position of theith molecule of component�. The
brackets indicate an ensemble average over time,t, and over
all molecules of component�. There is no ambiguity in
defining the self-diffusivity. Moreover, there are no practi-
cal obstacles in the determination of a self-diffusivity from
a molecular dynamics simulation, aside from the ubiquitous
concerns that the simulation include a sufficient number of
molecules and be of adequate duration so as to ensure ac-
ceptable statistical accuracy of the results.

A second method to determine the self-diffusivity is to
use the velocity auto-correlation function in a Green–Kubo

relation[4–6]

Dself,� = 1

d

∫ ∞

0
〈v�̄,i

(t + τ) · v�̄,i
(t)〉dτ (2)

wherev�̄,i
is the velocity of the ith molecule of compo-

nent �. Again, there is no practical impediment to imple-
mentation, except to be aware that this integral contains a
long-time tail.

2.1.2. Transport diffusivities from simulation
There are several ways that one can measure the trans-

port diffusivity of a mixture in an MD simulation. First, one
can perform a non-equilibrium MD simulation. For exam-
ple, Heffelfinger and van Swol[7] developed and used the
dual control-volume grand-canonical molecular dynamics
(DCV-GCMD) simulation to measure transport diffusivi-
ties [7]. Using this technique, one established a gradient in
chemical potential. One measures the flux. One can then
use Fick’s law to back out the transport diffusivity. Maginn
and Bell [8] used color field theory and non-equilibrium
MD simulations to generate transport diffusivities. This
method, although more efficient than DCV-GCMD, is
still computationally expensive. Arya et. al.[9] have also
compared equilibrium MD simulations, with external field
non-equilibrium MD (EF-NEMD) and the DCV-GCMD
simulations for consistency in transport coefficients and the
computational expense. They report that both EMD and
EF-NEMD are far more efficient than DCV-GCMD.

A second method to determine the transport diffusivity is
to run equilibrium MD simulations, as described above, and
to invoke the Darken equation[10]. The Darken equation
can be written as

D�� =
(
∂ ln a�

∂ ln x�

)
T,p

(x�Dself,� + x�Dself,�) (3)

wherekB is Boltzmann’s constant,T temperature,a� the ac-
tivity of component�, andx� is the mole fraction. Although
the Darken equation was published in 1948 to describe
diffusion in binary alloys, it has been widely used for a
variety of systems in the subsequent half century. There are
numerous approximations involved in the Darken equation
and there exist decades of literature attempting to quantify
the magnitude of error resulting from those approximations
[11,12]. Carman summarizes his findings, “. . . the Darken
type of equation and probably any equation based upon a
simple premise cannot be expected to give a highly accurate
correlation with experimental data in most systems.”[11].
Nevertheless, the Darken equation is still widely used in
both experimental and simulated systems to compute trans-
port diffusivities from self-diffusivities[13]. The appeal of
the Darken equation is that it requires only self-diffusivities,
which can be obtained in an unambiguous manner and with
some statistical significance from a single equilibrium MD
simulation.

A third method of obtaining the transport diffusivities is to
adopt the formalism of linear irreversible thermodynamics,
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in which one can relate transport diffusivities to phenomeno-
logical coefficients. These phenomenological coefficients
in turn can be obtained from equilibrium MD simulations
[8,14,15]. Again the phenomenological coefficients can be
obtained from equivalent Green–Kubo or Einstein-like rela-
tions. The disadvantage with this method lies in the fact that
the phenomenological coefficients display a far greater sus-
ceptibility to statistical noise than do the self-diffusivities.
Therefore, in order to obtain a statistically reliable diffusiv-
ity from the phenomenological coefficients, one must av-
erage the results of many simulations. Previous researchers
have used an average over 10–14[15].

Sometimes the transport diffusivity is called the “mutual
diffusion coefficient”[16,17]. This mutual diffusion coeffi-
cient is a transport diffusivity for a binary system relative to
a local center of volume frame of reference. It effectively is
using linear irreversible thermodynamics to obtain the trans-
port diffusivity. As such, numerous simulations are required
to obtain a reasonable standard deviation. Jolly and Bear-
man averaged 27 estimates[16].

Apart from these methods listed above for obtaining
the transport diffusivity, there are other techniques. For
example, Ali et al.[18] employed mode coupling theory
to estimate transport diffusivities of binary Lennard–Jones
systems[18]. The full advantage of this approach has not
yet been explored.

Of these methods, the Darken equation is the least rig-
orous, but has the advantage that it requires the least com-
putation time because self-diffusivities take less simulation
effort to compute than transport diffusivities. The reason
lies in the fact that each molecule contributes independent
information to the self-diffusivity at every time step, effec-
tively providing N data points to which the self-diffusivity
will be fit. However, the transport diffusivities examine sys-
tem properties, like center-of-mass position, which provide
only one piece of information per time step.

In the Darken equation, one must still calculate the ther-
modynamic factor. There are a variety of ways to do this.
Here we discuss two methods. First, if one has an equation
of state (EOS) that describes the simulated fluid relatively
well, then one can simply use the equation of state to eval-
uate the activity and the necessary partial derivative of the
activity, which is the thermodynamic factor in the Darken
equation. If one chooses this approach, then one does not
require additional simulation time and maintains the advan-
tage of the Darken equation.

Alternatively, one can use molecular simulations to de-
termine the thermodynamic factor. For example, there
are methods to determine the chemical potential of a
molecular-level simulation. One common method is called
Widom’s particle insertion method[4,19]. In this method,
one attempts to regularly insert particles into the simula-
tion. Depending upon the ease with which the particles
are accepted, one can determine the chemical potential.
This method only works well for gases. As the fluid
becomes more dense, the acceptance probability is so

low that the method typically becomes computationally
impractical.

To obtain the derivative of the chemical potential with
respect to mole fraction, as needed for the thermody-
namic factor in Darken’s equation, one could then use a
centered-finite difference formula. If the system of interest
was atT, p, and mole fraction,x�, then one would simulate
the system atT, p, and mole fraction,x� + �x and atT,
p, and mole fraction,x� − �x. Widom’s particle insertion
method would be performed in all three simulations. Clearly,
these simulations would be most easily accomplished in the
isobaric–isothermal ensemble. Other researchers used grand
canonical Monte Carlo (GCMC) simulations to determine
the thermodynamic factor[15].

In this work, we are simulating bulk fluids. We will
demonstrate that the Lennard–Jones equation of state pre-
dicts the simulated thermodynamic properties well[20]. We
will use the Lennard–Jones equation of state to determine
the thermodynamic factor.

2.2. Theory, empirical correlations and corresponding
states plots

In this section, we make no attempt to review the rich and
lengthy history of the theoretical estimation of diffusivities.
Instead, we cite several specific theories and empirical cor-
relations that we will test, modify, and compare with our
simulation data.

We begin with kinetic theory of a dilute gas. The mean
molecular speed of component� is

ū� =
√

8kBT√
πm�

(4)

wherem� is the mass of 1 mol of component�. The mean
free path,λ,

λ = 1√
2πσ2

�n
(5)

wheren is the number density andσ� is the collision diam-
eter of a molecule of component�. When we compare to
simulations,σ� is the Lennard–Jones size parameter. Using
these definitions, the familiar expression from kinetic theory
for the self-diffusivity of a pure fluid of component� is

Dself,� = 1

3
ū�λ = 2

3

1

πσ2
�n

√
kB√
πm�

(6)

We have a basic prediction of the functional relationship of
the self-diffusivity on density, temperature, molecular size,
and molecular weight.Eq. (6) rigorously applies only to
single-component ideal gases.

Eq. (6) has no composition dependence. Thus, it cannot
be used to predict the self-diffusivity of each component in a
binary mixture. However, one can modifyEq. (6)to predict
the self-diffusivities of components in a mixture by using
the mean velocity of each component inEq. (4). We can
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build in composition dependence by using a mean diameter
defined as

σ̄ =
nc∑

�=1

x�σ� (7)

in Eq. (5), wherenc is the number of components in the
mixture. Making these substitutions inEq. (6)yields

Dself,�(x
¯
) = 1

3
ū�λ = 2

3

1

πσ̄2n

√
kB√
πm�

for � = 1 tonc (8)

Using Eq. (8), we can calculate distinct self-diffusivities
for all components in the mixture. We can expect that this
equation will only apply at low pressure. We will compare
our simulation results toEq. (8).

A second approach to predicting the self-diffusivity of
components in a mixture is to modify an existing correspond-
ing states relationship. One can use a corresponding-states
chart to obtain a value of (cDself,�)r where this product of
the concentration and self-diffusivity is reduced by the same
product at the critical point, (cDself,�)c

(cDself,�)r = (cDself,�)

(cDself,�)c
(9)

Charts are available and require only a reduced temperature
and pressure[3]. If one does not know the value of the
self-diffusivity at the critical point, one can use an empirical
formula to estimate it, such as[3]

(cDself,��∗)c = 2.96× 10−6
(

1

M�
+ 1

M�∗

)1/2
p

2/3
c�

T
1/6
c�

(10)

where the units for this correlation are concentration
[mol/cm3]; self-diffusivity [cm2/s]; critical pressure,pc�,
[atm]; critical temperature,Tc�, [K]; and molecular weight,
M�, [g/mol]. The�∗ component appears because this equa-
tion was originally developed for isotope diffusion. If we
are examining self-diffusion in a simulation, then both the�
and�∗ component have the same mass. The problems with
Eq. (10)are that (i) it does not apply to components in mix-
tures and (ii) it does not have any composition dependence.
We can modifyEq. (10) to remedy these shortcomings
by using mixing rules to estimate the critical pressure and
temperature. The mixing rule employed in this work is

T̄c =
nc∑

�=1

nc∑
�=1

x�x�

√
Tc,�Tc,� (11)

We used the same mixing rule for the critical pressure. A
modified version ofEq. (10)can be written

(cDself,�)c = 2.96× 10−6
(

2

M�

)1/2
p̄

2/3
c

T̄
1/6
c

for � = 1 tonc (12)

Eq. (12)can be used to generate distinct self-diffusivities at
the critical point for each component in the mixture. More-

over, those critical self-diffusivities will be functions of com-
position. UsingEq. (12)in conjunction with a corresponding
states chart, we are able to predict the self-diffusivities of
methane and ethane for the states we simulated in this work.
Note, that the mean critical properties are used not only in
Eq. (12)but also to calculate the reduced temperature and
pressure required to use the corresponding-states plot. We
expect thatEq. (12)will deliver more accurate predictions
thanEq. (8)because the corresponding states chart is based
on laboratory and simulation data.

We can now attempt to predict the transport diffusivity.
We will make three different approximations. The first is
to modify an empiricism based on both kinetic theory and
corresponding states, which originally had the form,[21]

pDtran

(pc,�pc,�)1/3(Tc,�Tc,�)5/12(1/M� + 1/M�)1/2

= 2.745× 10−4

(
T√

Tc,�Tc,�

)1.823

(13)

where this equation requires the same units asEq. (10).
The shortcoming ofEq. (13) is that it has no composition
dependence. We modified this empiricism in a manner that
was analogous to transformingEqs. (10)–(12). In short, we
replaced the critical values with mean critical values that
were functions of composition.

A second prediction of the transport diffusivity is to take
an expression completely analogous toEq. (10) and use
a corresponding states chart. Typically, this expression is
written

(cDtran)c=2.96× 10−6
(

1

M�
+ 1

M�

)1/2
√
pc,�p

2/3
c,�√

Tc,�T
1/6
c,�

(14)

Again, Eq. (14)contains no dependence on the mole frac-
tions. We replace the critical pressures and temperature with
mean values that are functions of composition, as given in
Eq. (11)to obtain a prediction that is a function of compo-
sition.

(cDtran)c = 2.96× 10−6
(

1

M�
+ 1

M�

)1/2
p̄

2/3
c

T̄
1/6
c

(15)

A third prediction of the transport diffusivity is to use the
self-diffusivities, predicted byEq. (8) or a corresponding-
states chart andEq. (12), in the Darken equation,Eq. (3). We
will compare all three of these predictions to our simulation
results.

3. Simulation

3.1. General notes

The molecular dynamics simulations performed in
this work were conducted using a homemade molecular
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dynamics code in FORTRAN 90. In a molecular dynamics
simulation, there are three sets of parameters that need to
be defined. The first set of parameters defines the thermo-
dynamic state and includes for a canonical ensemble the
temperature,T, the simulation volume,V, and the number
of molecules of each chemical species in the simulation,
Ni. The second set of parameters defines the identity of
each chemical species. In our simulations, we used the
Lennard–Jones potential to model intermolecular interac-
tions. Therefore, we can completely identify theith chemi-
cal species with three parameters:σi, the collision diameter,
εi, the energetic well depth, andMi, the molecular weight.
One should also include in this second set of parameters, the
long distance cut-off for the intermolecular interaction,rcut,
since it effectively determines the long-range mean-field
correction to the internal energy and pressure. The third
set of parameters defines the numerical procedure used to
integrate the classical equations of motion. The parameters
include the type of algorithm, the size of the time step, and
the number of time steps used during the equilibration stage
and the data production stage of the simulation. Knowing
these three sets of parameters completely defines the sim-
ulation. It is true that other parameters exist, such as (i) the
interval for updating a neighbor list, if a neighbor list is used
to increase the computational efficiency of the simulation,
or (ii) the size of the cell, if a linked-cell structure is used
to increase efficiency, or for that matter (iii) the interval at
which sampling is performed to obtain thermodynamic and
transport properties. However, these additional parameters,
if chosen properly, do not affect the result of the simulation
and therefore are in a sense auxiliary parameters.

In the following sections, we provide the additional details
of the simulations in various ensembles.

3.2. Microcanonical ensemble

The microcanonical ensemble is a very satisfying ensem-
ble for molecular dynamics simulations because one can
monitor the conservation of momentum and the conserva-
tion of energy and thus reassure oneself that all goes well in
the simulation. We assured ourselves that energy was con-
served by checking that the standard deviation of the total
energy of the system,U, was much smaller than the stan-
dard deviation of either the kinetic, KE, or potential, PE,
energies (which should be equal).

σU << σKE ≈ σPE (16)

Energy conservation is of course a function of step size. In
practice, we saw that for our simulations, with the base pa-
rameters as defined inTable 1, that the standard deviation
of the total energy is, on average, a factor of 63 (±22) times
smaller than the average of the standard deviations of the ki-
netic and potential energies. The conservation of momentum
was typically good to 14 significant figures. The reason that
the momentum is conserved to many more significant fig-
ures than the energy is that, even when the numerical method

Table 1
Simulation parameters

Thermodynamic parameters
Total number of molecules 10000
Temperature (K) 350
Molar volume (Å3/mol) 392.62

Chemical identity properties
Intermolecular potential Lennard Jones
σCH4 (Å) 3.822
σC2H6 (Å) 4.418
εCH4 (K) 137
εC2H6 (K) 230
MCH4 (g/mol) 16.042
MC2H6 (g/mol) 30.068
Long-range cut-off distance (Å) 15

Numerical integration parameters
Integration algorithm Gear fifth-order predictor

corrector[fn]
Time step (fs) 2
Number of equilibration steps 100000
Number of data production steps 1000000

Auxiliary parameters
Sampling interval for thermodynamic

properties (fs)
2

Sampling interval for transport
properties (fs)

2000

Temperature-controlling frequency
(fs−1)

10−5

Pressure-controlling frequency (fs−1) 10−5

Diffusivity parameters
Minimum elapsed time (fs) 500000
Maximum elapsed time (fs) 1000000

used to integrate the equations of motion results in a slightly
erroneous force, that same erroneous force is applied to both
molecules (opposite in sign for one molecule) comprising
the pair in the pair-wise Lennard–Jones interaction, and thus
momentum is conserved within machine truncation error.

The microcanonical ensemble has the disadvantage that
one has to specify the total energy, when one typically would
rather specify the temperature (or equivalently the kinetic
energy). Traditionally, one can get around this by using ve-
locity scaling during the equilibration stage of the simula-
tion. At the end of equilibration, one should have a system at
the average potential energy and the exact set temperature.
Using then the microcanonical ensemble (i.e. ceasing ve-
locity scaling) for the data production run, should maintain
that same temperature on a time-averaged basis. However,
in practice, there is a flaw in this procedure. The flaw lies in
the fact that during the canonical equilibration, the potential
energy fluctuates about an average. If one stops the equi-
libration stage arbitrarily, the potential energy is not at the
average value. Instead, it is fluctuating somewhere around
the average value. The consequence of this is that, shifting
to the microcanonical ensemble at this point, fixes the sys-
tem to a state that does not correspond to the average poten-
tial energy. If the last value of the potential energy during
equilibration was higher than the average, then it will drop
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during the microcanonical production stage and the kinetic
energy will commensurately rise, increasing the temperature
beyond the set point. The reverse case, causing a decrease
in temperature, is equally likely.

We developed a technique to avoid this problem by
equilibrating in three stages when simulating in the mi-
crocanonical ensemble. In the first stage, we perform the
normal equilibration for 0.2 ns. In the second stage of equi-
libration, we are already equilibrated, but we continue the
canonical simulation for 0.1 ns and gather data on the aver-
age potential energy. The sole purpose of the second stage
of equilibration is to determine the average potential en-
ergy. We do not use the average potential energy from the
first stage of equilibration because that contains data during
the transition to equilibrium. The third and final stage of
equilibration lasts only a few thousand femtoseconds. We
monitor the instantaneous value of the potential energy until
it matches within an acceptable tolerance the average value
from the second stage of equilibration. When the two val-
ues do match, we begin the microcanonical data production
stage of the simulation immediately. This assures that the
total energy of the microcanonical simulation corresponds
to the sum of the true kinetic and average potential ener-
gies of the system. This eliminates the temperature shift in
moving from the canonical equilibration to microcanoni-
cal data production stage. This technique was used in all
microcanonical simulations presented in this work.

3.3. Canonical ensemble

In this work, we will compare diffusivities obtained for
the same system in the microcanonical and canonical en-
sembles. The temperature was maintained constant in the
canonical ensemble using the Hoover formulation of the
Nosé thermostat, henceforth referred to as the Nosé–Hoover
thermostat[22,23]. This thermostat was used in preference
to other popular techniques for simulating in the canonical
ensemble, such as (i) velocity scaling[5]; (ii) the original
Nosé thermostat[24]; and Berendsen’s thermostat[25] for
several reasons. First, there is no significant computational
advantage to one thermostat over another; all require nomi-
nal CPU resources relative to the force evaluation. Second,
the Nosé and Nosé–Hoover thermostats generate trajecto-
ries in the canonical ensemble. It has been proven that they
do so uniquely[23]. Third, the Nosé–Hoover thermostat
is a more eloquent and less inconvenient formulation of
the Nosé thermostat because the time-scaling issue disap-
pears, meaning that all time steps in the MD simulation
are of equal size when using the Nosé–Hoover thermostat.
We employ the Nosé–Hoover thermostat for all canonical
simulations in this work because of its rigor and conve-
nience. Moreover, we follow the formalism of Melchionna
et al. [23] which present the Nosé–Hoover thermostat
in a clear and elegant manner in which it has an obvi-
ous analog in the isobaric–isothermal ensemble, discussed
shortly.

The Nosé–Hoover thermostat requires one parameter,
which controls the period (but not the amplitude) of the
temperature fluctuations around the mean. In Hoover’s for-
malism, this parameter, sometimes called the thermal iner-
tial parameter has units of mass times length squared. This
parameter,Q, also scales with the number of molecules in
the simulation. We prefer the more intuitive reformulation
of Melchionna et al.[23] which presents the single parame-
ter as a frequency,νT , with units of inverse time, where the
subscriptT indicates that it is the temperature-controlling
frequency (in the isobaric–isothermal ensemble, there will
also be a pressure-controlling frequency). Our base case
numerical value of the parameter isνT = 10−5 fs−1. We
provide justification for this value below.

3.4. Isothermal-isobaric ensemble

In this work, we will compare diffusivities obtained for
the same system in the microcanonical and the isothermal-
isobaric ensembles. The temperature was maintained con-
stant in the isothermal-isobaric ensemble using the same
formulation of the Nosé–Hoover thermostat described
above. The pressure was maintained constant in the
isothermal-isobaric ensemble using the analogous barostat
of Melchionna et al.[23]. This barostat provides trajectories
in the isobaric–isothermal ensemble, in contrast to other
formulations of the barostat[26].

The Melchionna barostat requires one parameter, which
controls the period (but not the amplitude) of the pressure
fluctuations around the mean. This parameter is a frequency,
νP , with units of inverse time, where the subscriptP indicates
that it is the pressure-controlling frequency. Our base case
numerical value of the parameter isνP = 10−5 fs−1.

3.5. Self-diffusivity

We obtain a self-diffusivity from the simulations via
Einstein’s relation. However, we modify the traditional
form, as is given inEq. (1). The problem withEq. (1) is
that it yields a self-diffusivity, which is a function of any
center-of-mass motion of the simulated system. It is obvious
that this is the case since, if the system were undergoing a
uniform motion with a non-zero velocity, the displacement
due to the mass-averaged velocity would contribute to the
mean square displacement.

Indeed, center-of-mass motion in a simulation can be
caused by an external field, in which case the center-of-mass
motion is characterized by the mass-average velocity. Al-
ternatively, the random center-of-mass motion can also be
caused by thermostats. For example, if one simulates in the
canonical ensemble, one must use a thermostat to control
the temperature. Thermostats not only violate conservation
of energy, but in multicomponent systems violate conserva-
tion of momentum as well. So even if a system begins with
zero net momentum, the center of mass can still shift due
to a thermostat. The drift with the Nose–Hoover thermostat



D.J. Keffer, P. Adhangale / Chemical Engineering Journal 100 (2004) 51–69 57

depends upon the magnitude of the temperature-controlling
frequency. Simulations in the isobaric–isothermal ensemble
can have center-of-mass drift due to both the temperature
and pressure controllers.

It is desirable to have a diffusivity relative to a
mass-averaged velocity, or in the case of a simulation, the
center-of-mass motion, because the diffusivity must be cal-
culated in the same frame of reference in which it is to be
used. For example, if one writes the flux equation,

j
¯�

= −ρD��∇w� (17)

wherej
¯�

is the diffusive mass flux of component� relative to
the mass-average velocity,ρ the mass density, andw� is the
mass fraction of component�, then the transport diffusiv-
ity must have been calculated relative to the center-of-mass
motion. Since we will relate the self-diffusivity to the trans-
port diffusivity via the Darken equation, we must have the
self-diffusivities calculated relative to the same frame of ref-
erence. It can be proven that the diffusivity inEq. (17) is
the same diffusivity that appears in an alternate expression
of Fick’s law

J
¯
∗
� = −cD��∇x� (18)

whereJ
¯
∗
� is the diffusive molar flux of component� relative

to the molar-average velocity,c the molar concentration, and
x� is the mole fraction of component�.

If we use Eq. (1) to calculate the self-diffusivity, and
the center-of-mass of the simulation drifts for any of the
reasons given above, then we can still use that diffusivity in
a flux equation likeEq. (17), but now the mass flux contains
that same center-of-mass motion and is no longer purely
diffusive. If we did not record the center-of-mass motion,
then we can’t evaluate the flux relative to the laboratory
frame of reference.

To ensure that we measure a diffusivity relative to the
center-of-mass motion, we rewriteEq. (1)as

Dself,� = 1

6
lim
τ→∞

1

τ
〈[(r

¯�,i(t + τ)− r
¯com

(t + τ))

− (r
¯�,i(t)− r

¯com(t))]
2〉 (19)

This mean square displacement is now relative to the net
center-of-mass motion that took place from timet to timet+
τ. In this work, we calculate the diffusivity for all simulations
using bothEqs. (1) and (19).

Regardless of our choice of frame of reference, using
the Einstein relation requires that one perform a linear least
squares regression of the mean square displacement (MSD)
as a function of time. Because Einstein’s relation is true only
at long times, the intercept of this fit is non-zero. The inter-
cept does not have any useful physical meaning, but it cannot
be assumed to be zero. We record positions every 2 ps during
the simulation lasting 2 ns. It is possible therefore to generate
MSD for elapsed times of 2–2000 ps. However, Einstein’s
relation only holds in the long time limit. Therefore, we do
not want to regress to data before that limit. Furthermore,

we desire statistically accurate diffusivities. There is only
one data point per molecule for the MSD at an elapsed time
of 2000 ps. However, there are 501 data points per molecule
for the MSD at an elapsed time of 1000 ps because we can
examine an elapsed time fromt = 0 to t = 1000, t = 2
to t = 1002 . . . until t = 1000 tot = 2000 ps. Therefore,
our upper limit on elapsed time is bounded by statistical ac-
curacy. In general, we have found the following rule to be
useful. We set the lower limit of the elapsed time to one
quarter of the simulation duration. We set the upper limit of
the elapsed time to one-half of the simulation duration. We
perform our regression only between these limits. It is an
arbitrary set of limits, but it is one that satisfies both the re-
quirement that we be in the long-time limit and that we have
good statistics, provided of course, that the total duration of
the simulation is sufficient to capture the temporal fluctua-
tions in the dynamics of the system. Moreover, these limits
have the advantage that they have now been unambiguously
defined. We use these limits for all regressions yielding the
self-diffusivity in this work.

The regression is performed for each of the three dimen-
sions independently. Since, the fluid is isotropic, we report
the average diffusivity. The standard deviation (the errors
bars in the plots of the diffusivity) is determined from the
three values obtained for each dimension.

In Table 1, we list the default parameters used for the sim-
ulations in this work. All simulations use these parameters
unless explicitly specified otherwise.

3.6. Transport diffusivity

As noted above, there are many different ways to formu-
late the transport diffusivity, depending upon the choice of
frame of reference and diffusive driving force (e.g. gradi-
ent of mole fraction or concentration of�, or chemical po-
tential of �, etc.) Since we intend to compare our results
to the predictions of kinetic theory, empirical correlations,
and corresponding-states charts, we need to make sure that
the transport diffusivities that we generate are relative to the
same frame of reference and apply to the same flux law.
The transport diffusivities described above are intended to
be used in a flux equation of the form given inEq. (17)
[3].

In this work, we compute our transport diffusivities using
the Darken equation,Eq. (3). It is true that this method of
estimation contains approximations not present in the other
methods described. However, because the other methods are
subject to greater statistical noise, in this paper we limit our-
selves to the Darken equation. We intend to investigate the
discrepancies between the various approaches of computing
transport diffusivities for this system.

We use the Lennard–Jones equation of state to compute
the thermodynamic factor in the Darken equation. In or-
der to obtain the mixture parameters for the Lennard–Jones
equation of state, we usedEq. (7) for the mixing rule of
the collision diameter andEq. (11) for the mixing rule of
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the energetic well depth. We will show that this EOS does
an excellent job of predicting the thermodynamic properties
that the simulation does generate, such as pressure. Finally,
we use bothEqs. (1) and (19)to obtain the self-diffusivities,
so that we can compare the two equations.

4. Results and discussion

4.1. Diffusivity sensitivity to simulation parameters

In this work, we anticipate that the trends in the self- and
transport-diffusivities relative to thermodynamic state vari-
ables that we are attempting to observe and establish are
sensitive to noise in the simulation results. Therefore, the
first task in our study was to verify that we could generate
reproducible trends in the data. To this end, we performed
simulations in the microcanonical ensemble varying both the
number of molecules in the system and the duration of the
production stage of the simulation. Our base simulation in-
cluded a total of 104 molecules (regardless of composition)
and 106 production time steps. These values are unusually
large for the simulation of a homogeneous fluid. However,
we felt that we needed at least 103 molecules of each species
present. Thus, with 104 molecules, we could simulate mix-
tures with mole fractions from 0.1 to 0.9. The results of
these simulations are shown inFig. 1. Also shown on this
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Fig. 1. Self-diffusivities and transport diffusivity for mixtures of methane and ethane as a function of composition at a temperature of 350 K and a density
of 2.547× 10−3 molecules/Å3. These results come from the microcanonical ensemble using base case parameters of 104 molecules and 106 production
steps. The polynomial fits are provided for statistical purposes only.

plot are linear fits of the self-diffusivity of the form:

Dself,� = c
(0)
self,� + c

(1)
self,�xMe (20)

The transport diffusivity is fit with a quadratic polynomial
of the form:

Dtran = c
(0)
tran + c

(1)
tranxMe + c

(2)
tranx

2
Me (21)

The purpose in fittingEq. (20) to the self-diffusivity and
Eq. (21)to the transport diffusivity is not to suggest some
functional dependence of the diffusivities on composition.
On the contrary, our motives in performing this fitting are
statistical in nature. In order to compare our different sim-
ulations across the entire range of composition, it is neces-
sary to create parameters that incorporate information across
the range and can be rigorously statistically characterized,
in terms of mean and variance. The coefficients ofEq. (20)
and (21)fit this criterion. The coefficients were obtained us-
ing linear least squares regression to the simulation data and
are reported inTable 2. The errors reported inTable 2repre-
sent one standard deviation, as generated by the regression
analysis.

In Fig. 1, we find that the self-diffusivities of methane and
ethane increase nearly linearly with an increase in the mole
fraction of methane. The error bars inFig. 1 and all subse-
quent figures represent one standard deviation. It is impor-
tant to realize inFig. 1that what is being held constant is (i)
the total number of molecules; (ii) the temperature; and (iii)
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the system volume. Thus, inFig. 1, the molar density is con-
stant at all points. The value of the density is 2.5472×10−3

molecules/Å3. The mass density and the pressure change at
each simulation point.

We also fit the self-diffusivity to a first-order polynomial
and the transport diffusivity to a second-order polynomial.
We remind the reader that the linear functional form of the
self-diffusivity on mole fraction and the quadratic func-
tional form of the transport diffusivity on mole fraction is
not substantiated by any molecular-level physics. On the
contrary, we assume this form by inspection of the curves.
That said, the self-diffusivities are remarkably linear with
mole fraction. The coefficients and the measures of fit of
the regressions (MOF) are reported inTable 2. The MOF
of the regression on the self-diffusivities of methane and
ethane are respectively 0.969 and 0.978. The MOF on the
regression of the transport diffusivity is 0.921. We do not
claim that the dependence of transport diffusivity on mole
fraction is quadratic, but the high MOF indicates that the
data follows some smooth curve that is relatively well ap-
proximated by a parabola. An increase in noise in the data
would diminish these fits because it would diminish the
smoothness of the curve.

The pressure for this set of simulations is shown in
Fig. 2. We expect the pressure to increase with an increase
in methane mole fraction based on the fact that the value
of the energetic interaction parameters for ethane is greater
than that for methane. Ethane has a much stronger attrac-
tion to other molecules, effectively reducing the pressure in
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Fig. 2. Pressure for mixtures of methane and ethane as a function of composition at a temperature of 350 K and a density of 2.547× 10−3 molecules/Å3.
These results come from the microcanonical ensemble for the base-case simulation, the small system, and the short simulation. The equations of state
are provided for comparison purposes.

the system, when temperature and molar density are held
constant.

Four equations of state—the ideal gas, van der Waals,
Peng–Robinson, and the Lennard–Jones equation of
state—are also plotted inFig. 2 for reference purposes. In
order to implement the van der Waals and Peng–Robinson
equations of state, we required some physical properties, in-
cluding critical properties. The values that we used are given
in Table 3 [27]. With these properties, we can calculate all
of the parameters in the van der Waals and Peng–Robinson
equations of state[27]. We point out now and will take
advantage of the fact later that the Lennard–Jones equation
of state models a high-pressure binary mixture of methane
and ethane extremely well. The average relative error of the
Lennard–Jones equation of state with respect to the simu-
lation values is 0.13%. By comparison the average errors
of the ideal gas, van der Waals, and Peng–Robinson EOS
are 29.7, 4.1, and 5.2% respectively. The ideal gas EOS is
qualitatively wrong because, of course, the pressure of an
ideal gas has no composition dependence.

By comparing, Figs. 1 and 2, one can see that the
self-diffusivities increase with increasing pressure, when the
molar volume and temperature are held constant. This may
be counter-intuitive and will be discussed inSection 4.3.

In Figs. 1 and 2, we simulated the system in the micro-
canonical ensemble. As such the temperature was not fixed.
As described above, we can set the total energy so as to
have a kinetic energy that corresponds to a desired temper-
ature. In the eleven simulations shown inFigs. 1 and 2, the
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Table 2
Regression coefficients and uncertainties

Ensemble Number of
molecules

Number of
time steps

Component Constant coefficient (m2/s) Linear coefficient (m2/s) Quadratic coefficient (m2/s) MOF

Microcanonical 104 106 Methane 15.19× 10−8 ± 0.30 × 10−8 7.65 × 10−8 ± 0.48 × 10−8 – 0.969
Ethane 10.62× 10−8 ± 0.17 × 10−8 5.47 × 10−8 ± 0.31 × 10−8 – 0.978
Transport 14.68× 10−8 ± 0.37 × 10−8 8.88 × 10−8 ± 1.66 × 10−8 −6.46 × 10−8 ± 1.71 × 10−8 0.921
Methane 15.53× 10−8 ± 0.65 × 10−8 6.50 × 10−8 ± 1.05 × 10−8 – 0.828

Microcanonical 103 106 Ethane 10.76× 10−8 ± 0.23 × 10−8 4.27 × 10−8 ± 0.41 × 10−8 – 0.940
Transport 14.37× 10−8 ± 0.88 × 10−8 5.44 × 10−8 ± 3.96 × 10−8 −4.33 × 10−8 ± 4.06 × 10−8 0.362
Methane 14.82× 10−8 ± 0.24 × 10−8 7.99 × 10−8 ± 0.38 × 10−8 – 0.982

Microcanonical 104 105 Ethane 10.54× 10−8 ± 0.14 × 10−8 5.42 × 10−8 ± 0.25 × 10−8 – 0.986
Transport 14.69× 10−8 ± 0.38 × 10−8 9.22 × 10−8 ± 1.70 × 10−8 −6.77 × 10−8 ± 1.74 × 10−8 0.889
Methane 14.92× 10−8 ± 0.18 × 10−8 7.93 × 10−8 ± 0.29 × 10−8 – 0.989

Canonical 104 106 Ethane 10.41× 10−8 ± 0.09 × 10−8 5.83 × 10−8 ± 0.17 × 10−8 – 0.994
Transport 14.07× 10−8 ± 0.26 × 10−8 7.31 × 10−8 ± 1.18 × 10−8 −4.40 × 10−8 ± 1.41 × 10−8 0.963
Methane 15.28× 10−8 ± 0.30 × 10−8 7.55 × 10−8 ± 0.49 × 10−8 – 0.984

Isobaric–isothermal 104 106 Ethane 10.42× 10−8 ± 0.15 × 10−8 5.67 × 10−8 ± 0.27 × 10−8 – 0.994
Transport 14.79× 10−8 ± 0.44 × 10−8 9.74 × 10−8 ± 1.99 × 10−8 −7.26 × 10−8 ± 0.97 × 10−8 0.900
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Table 3
Equation of state parameters[27]

Parameter Methane Ethane

Critical temperature (K) 190.6 305.3
Critical pressure (bar) 46.1 49.0
Binary interaction parameter −0.003 −0.003
Acentric factor 0.008 0.098

average temperature is 350.16 K with an average standard
deviation of 0.88 K. The maximum average simulation tem-
perature observed was 351.15 K at a methane mole fraction
of 0.2. The minimum average simulation temperature ob-
served was 349.72 K at a methane mole fraction of 0.7. This
slight fluctuation in the temperature should contribute very
little to noise in the diffusivities.

In order to ensure that we had a sufficient system size
and simulation duration, we next conducted a second set
of eleven simulations with only 103 molecules run for the
full 106 time steps (the small system) as well as a third set
of simulations with 104 molecules run for only 105 time
steps (the short simulation). Both of these sets of simulations
gave average values of the thermodynamic properties (e.g.
pressure, internal energy, constant-volume heat capacity) in
excellent agreement with our base case simulation set. If we
were to choose as our basis for judgment a thermodynamic
variable such as the pressure, it would seem that there is no
significant difference between the results of the base case,
small system, and short simulation.
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Fig. 3. Self-diffusivities and transport diffusivity for mixtures of methane and ethane as a function of composition at a temperature of 350 K and a
density of 2.547× 10−3 molecules/Å3. These results come from the microcanonical ensemble using small system parameters of 103 molecules and 106

production steps. The polynomial fits are provided for statistical purposes only.

In Fig. 3, we plot the diffusivities obtained from the small
system (103 molecules run for the full 106 time steps). The
noise in the data is substantially greater than in the base case.
This noise is particularly evident at a mole fraction of 10%
methane, where we have only 100 methane molecules. In or-
der to compare the results of the small and large simulation
systems in a statistically reliable manner, we can examine
the coefficients of the linear fits to the self-diffusivities and
the quadratic fits to the transport diffusivity. We find that for
both self-diffusivities and the transport diffusivity, the MOF
decreases with a decrease in system size. In fact the trans-
port diffusivity shrinks from 0.921 to 0.362. Moreover, the
standard deviations of the regression coefficients grow as we
decrease system size. Consider, for example, the quadratic
coefficient for the transport diffusivity regression. The stan-
dard deviation of the quadratic coefficient increases from
26.5% of the average coefficient value for the large system
to 93.8% of the average value for the small system. There-
fore, we conclude that, while the thermodynamic properties,
such as the pressure, were reliably duplicated by the small
system, we cannot establish statistically significant trends in
the diffusivity with only 1000 molecules in the system.

Diffusivities were also obtained from the short simulation
(104 molecules run for 105 time steps). The plot of these
diffusivities as a function of the mixture composition, looks
very much likeFig. 1 to the eye and is hence not presented.
We obtain reasonable results with the short simulation. When
we examine the regression coefficients inTable 2, we see
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that all coefficients have standards deviations that overlap
with the base case. Therefore, in practice, we could use
the short simulation to obtain reliable self-diffusivities. In
the present work, we continue to run the longer simulations
of the base case because we are making special efforts to
minimize noise in the data for the purposes of establishing
the composition dependence of the transport diffusivity.

4.2. Diffusivity sensitivity to choice of ensemble

The choice of ensemble in which the system is simu-
lated should not affect the value of the diffusivity. In this
work, we are interested in establishing the dependence of
the transport diffusivity on both (i) the composition and
pressure holding temperature and density constant; and (ii)
the composition and density holding temperature and pres-
sure constant. The first task naturally requires simulation in
the canonical ensemble. The second task naturally requires
simulation in the isobaric–isothermal ensemble. Therefore,
we wish to demonstrate and verify that the canonical and
isobaric–isothermal ensembles yield the same results as
those given by the microcanonical ensemble inFigs. 1
and 3as well asTable 2.

The first step in implementing the canonical ensemble
using the Melchionna reformulation of the Nosé–Hoover
thermostat is to select a value of the temperature-controlling
frequency,νT . In order to determine an appropriate value
of νT , we performed canonical simulations (using base case
parameters) for a 50/50 mixture of methane and ethane,
where we varied the value ofνT from 10−10 to 10−2 fs−1 in
increments of one decade. We then plotted the mean values
and standard deviations of the thermodynamic and transport
properties as a function ofνT , not shown here. Because
we are simulating an equilibrium system, the properties
were weak functions ofνT , until we tried values larger than
10−2 fs−1, at which point our errors are due to instabilities
in the Gear predictor-corrector because the thermostat is
now acting on the same time scale as our integration time
step. Based on this analysis, we selectedνT = 10−5 fs−1,
which allows for very gentle temperature control in a sim-
ulation of length 2× 106 fs (as is our base case).

We need to repeat a comment regarding a nuance in the
calculation of the diffusivity in the canonical ensemble. In
the microcanonical ensemble, both energy and momentum
are conserved. Because momentum is conserved, the center
of mass of the system is stationary. Therefore, in a micro-
canonical ensemble the center-of-mass frame of reference
coincides with the laboratory frame of reference. However,
in the canonical ensemble, neither energy nor momentum is
conserved for mixtures. (it is true that momentum is con-
served for single component systems). Therefore, it is pos-
sible to observe a drift in the center of mass of the entire
simulation volume using the canonical ensemble. There-
fore, we calculated self-diffusivities using bothEqs. (1) and
(19), so that we could obtain it relative to the laboratory
frame-of-reference and the center-of-mass reference. For

small systems, we observed a difference between the two
diffusivities. For our base system, the error was less than
10−6%, which is certainly negligible given the other uncer-
tainties in the simulation. That being the case, in the simu-
lations in the canonical and isobaric–isothermal ensembles,
the laboratory frame-of-reference and the center-of-mass
reference coincide.

The results of a series of canonical simulations for our
base case simulation set as a function of composition du-
plicate the simulations shown inFigs. 1 and 3andTable 2
and are hence not presented. The exception is that now we
are using the canonical ensemble withνT = 10−5 fs−1. The
average mean temperature of the eleven simulations was
350.01 K with an average standard deviation of 1.19 K. The
canonical simulations duplicated the microcanonical results
for the thermodynamic properties. For example, the average
percent difference between the pressures for the two sets
of simulations was 0.14%. The diffusivities generated from
the canonical simulations are in quantitative agreement with
the microcanonical simulations. To statistically justify this
statement, we can compare the regression coefficients for the
linear fits to the self-diffusivities and the quadratic fit to the
transport diffusivity as shown inTable 2. The average dif-
ference between the coefficients for the different ensembles
is 0.56%. The standard deviations of the coefficients for the
self-diffusivities overlap. The coefficients for the transport
diffusivity from the canonical simulations are not as good,
but we believe that this variation is within the error of our
procedure. This discrepancy could be reduced by running
multiple simulations. However, the advantage of using the
Darken equation to obtain transport diffusivities is that it re-
quires only one simulation. If we lose this advantage, there
is no reason to use the Darken equation in favor of a more
rigorous approach.

We also verified that simulations in the isobaric–iso-
thermal ensemble reproduce the results from the micro-
canonical and canonical ensembles. We specified the set
pressure for each simulation in the isobaric–isothermal
ensemble as the average pressure from the canonical en-
semble. The density varies in these simulations. As was the
case for the canonical ensemble, the first step in implement-
ing the isobaric–isothermal ensemble using the Melchionna
barostat is to select a value of the pressure-controlling
frequency,νP . This selection was done in a manner anal-
ogous to the method used to determineνT . We simulated
a 50/50 mixture of methane and ethane at the set tem-
perature 350 K and the set pressure of 96.93 atm using
104 molecules and 106 time steps for values of log(νP )
ranging from 10−10 to 10−3 fs−1. Using the same selec-
tion criteria as was employed in the determination ofνT ,
we chose a base value ofνP = 10−5 fs−1. Neither energy
nor momentum is conserved in the isobaric–isothermal
ensemble. Therefore, it was again necessary to compute
diffusivities corrected to the center-of-mass frame of ref-
erence. Again, we found no difference in the first eight
digits (well beyond the accuracy of these simulations) of
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the self-diffusivities in the laboratory and center-of-mass
frames of reference.

The results of a series of isobaric–isothermal simulations
for our base case simulation set as a function of composition
duplicate the microcanonical simulations shown inFig. 1
and the canonical simulations, except that now we are us-
ing the isobaric–isothermal ensemble withνT = 10−5 fs−1

andνP = 10−5 fs−1. The average mean temperature of the
eleven simulations was 350.00 K with an average standard
deviation of 1.21 K. The isobaric–isothermal simulations
duplicated the microcanonical results for the thermody-
namic properties. For example, the average percent differ-
ence between the pressures for the two sets of simulations
was 0.06% and the average percent difference between the
molar densities for the two sets of simulations was 0.14%.
The diffusivities from the isobaric–isothermal simulations
are in quantitative agreement with the microcanonical
simulations. To statistically justify this statement, we can
compare the regression coefficients for the linear fits to
the self-diffusivities and the quadratic fit to the transport
diffusivity as shown inTable 2. The agreement between
coefficients for the self-diffusivity is excellent. The average
difference between the coefficients for the different ensem-
bles is 0.78%. The coefficients for the transport diffusivity
from the isobaric–isothermal simulations are within the
error bars of the microcanonical values.

At this point we have established that with (i) large
systems; (ii) long simulations; (iii) carefully chosen
temperature- and pressure-controlling frequencies; and (iv)
the appropriate frame of reference of the self-diffusivity,
that simulations in the microcanonical, canonical, and
isobaric–isothermal ensembles can yield reproducible
self-diffusivities and transport diffusivities. In the work that
follows, we will use only one ensemble for each analysis,
choosing the one that naturally applies. For example, when
we establish the relationship between diffusivity and com-
position holding pressure and temperature constant we will
use the isobaric–isothermal ensemble. However, when we
establish the relationship between diffusivity and tempera-
ture holding composition and density constant we will use
the canonical ensemble.

4.3. Diffusivity as a function of thermodynamic state

We can revisitFig. 1, with the aim of explaining the re-
lationship between diffusivity and composition when hold-
ing the density and temperature constant. It is clear from
Fig. 2 that the pressure increases with increasing methane
mole fraction. It may be counter-intuitive to think that the
self-diffusivity of a material should increase with increasing
pressure. However, this line of thinking assumes that with an
increase in pressure, density increases. When dealing with a
multicomponent mixture, this is not necessarily the case. In
these simulations, the increase in pressure was due to the in-
crease in methane mole fraction, as explained above. Since
methane has a smaller mass than ethane, we can expect on

the basis of kinetic theory (Eq. (6)) that it should diffuse
faster.

In Fig. 4, we plot the predictions of kinetic theory for di-
lute gases,Eq. (8), and the average of the self-diffusivities
from the microcanonical, canonical, and isobaric–isothermal
ensembles. While the qualitative trends are captured, the
results are quantitatively wrong. The root-mean-square er-
ror for Eq. (8) relative to the simulation results is 38% for
methane and 35% for ethane. This error is not surprising,
since we simulated a high-pressure fluid andEq. (8)applies
to dilute gases.

Using Eq. (12) in conjunction with a corresponding
states chart, we were able to predict the self-diffusivities of
methane and ethane for the states we simulated. Note, that
the mean critical properties are used not only inEq. (12)
but also to calculate the reduced temperature and pressure
required to use the corresponding-states plot. These predic-
tions are shown inFig. 5. The predictions are quantitatively
accurate. The root-mean-square errors forEq. (12) and a
corresponding-states plot relative to the simulation results
is 5.4% for methane and 2.9% for ethane.

We can now attempt to predict the transport diffusivity.
We will make three different approximations. The first is
to use our modified version ofEq. (13). The predictions of
Eq. (13)are shown inFig. 4. The predictions are quantita-
tively wrong, although they do seem to capture the correct
qualitative trend. The root-mean-square error forEq. (13)is
55%.

We useEq. (15)and a corresponding-state chart to predict
the transport diffusivity inFig. 5. This prediction while quan-
titatively reasonable, predicts the wrong qualitative trend.
The root-mean-square error forEq. (15)is 14%. The predic-
tion fails to capture the curvature of the transport diffusivity
as a function of mole fraction.

A third prediction of the transport diffusivity is to use the
self-diffusivities predicted byEq. (12)and the correspond-
ing states chart (plotted inFig. 5) in the Darken equation,
Eq. (3). We show this prediction inFig. 5. The predic-
tions are both qualitatively and quantitatively accurate. The
root-mean-square error relative to the simulation results is
4.7%. We should be careful to remark that the accuracy
of this last estimation of the transport diffusivity is not a
vindication of the Darken equation, since the transport dif-
fusivity calculated from both the simulation results and the
theory used the Darken equation.

For the remainder of this work, we present simulation
results using only one ensemble. Furthermore, we pre-
dict self-diffusivities usingEq. (12) and a corresponding
states chart. We predict transport diffusivities using those
self-diffusivities in the Darken equation.

We next performed a set of simulations in the isobaric–iso-
thermal ensemble where we held the pressure and tem-
perature constant at values of 96.76 atm and 350 K. We
specified the composition and allowed the density to vary,
in contrast to the previous simulations in which we speci-
fied the same molar density at all compositions and allowed
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Fig. 4. Predictions of kinetic theory for the self-diffusivities and the prediction of an empirical correlation for the transport diffusivity. These simulation
points are the average of those obtained from the base case simulations in the microcanonical, canonical and the isobaric–isothermal ensembles.
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the pressure to vary. InFig. 6, we plot the self-diffusivity
and transport-diffusivity as a function of mole fraction.
The self-diffusivities increase with increasing mole frac-
tion of methane. The cause of this increase is a decrease
in the density. The molar density decreases with an in-
crease in methane mole fraction, simply because at a given
pressure and temperature, the Lennard–Jones attraction
of methane is weaker than that of ethane. As a result of
this decrease in molar density, the diffusivity increases.
The predictions ofEq. (12) and the corresponding state
chart are shown inFig. 6. The predictions are both quali-
tatively accurate. The root-mean-square error forEq. (12)
and a corresponding-states plot relative to the simulation
results is 7.7% for methane and 7.8% for ethane. The
root-mean-square error for the prediction of the transport
diffusivity using the predicted self-diffusivities and the
Darken equation is 7.6%.

We also performed a set of simulations in the canoni-
cal ensemble where we held the composition and density
constant at values of 50 mol% methane and 2.5474× 10−3

molecules/Å3. We specified the temperature over a range
from 300 to 700 K and allowed the pressure to vary. In
Fig. 7, we plot the self-diffusivity and transport-diffusivity
as a function of temperature. As we increase the tempera-
ture holding the density and composition constant, the pres-
sure increases. Intuitively, the increase in temperature should
cause an increase in diffusivity, despite the increase in the
pressure. The predictions fromEq. (12)and the correspond-
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Fig. 8. Self-diffusivities and transport diffusivity for mixtures of methane and ethane as a function of temperature at a composition of 50/50 mol%
methane/ethane and a pressure of 96.76 atm. These results come from the isobaric–isothermal ensemble using base case parameters of 104 molecules
and 106 production steps. Also shown are the predictions of a corresponding states chart combined with kinetic theory.

ing states chart are not perfectly smooth, due to the inac-
curacy involved in reading the corresponding states chart.
However, this is a source of inaccuracy that the practicing en-
gineer will face in predicting transport diffusivities. We see
that our method of predicting self-diffusivities and transport
diffusivities works across a broad range of temperatures. At
higher temperatures, the fluid will continue to become more
ideal with transport properties easier to predict.

We then performed a set of simulations in the isobaric–iso-
thermal ensemble where we held the composition and pres-
sure constant at values of 50 mol% methane and 96.76 atm.
We specified the temperature over a range from 300 to
700 K and allowed the density to vary. InFig. 8, we plot
the self-diffusivity and transport-diffusivity as a function of
temperature. As we increase the temperature holding the
pressure and composition constant, the density decreases.
Again, the increase in temperature should cause an increase
in diffusivity. The decrease in density should also contribute
to an increase in diffusivity. The predictions fromEq. (12)
model the temperature dependence extremely well.

Finally, we performed a set of simulations in the
isobaric–isothermal ensemble where we held the compo-
sition and temperature constant at values of 50% methane
and 350 K. We specified the pressure over a broad range
and allowed the density to vary. InFig. 9, we plot the
self-diffusivity and transport-diffusivity as a function of
pressure. This figure is on a log–log scale, because the
pressure range is so broad. The prediction ofEq. (12)and
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the corresponding states chart does not extend through all
of the simulation data, due to the fact that the chart only
applies up to a reduced pressure of 10. Once the pressure is
greater than 10 times the critical pressure, the charts cannot
be used to compare with the simulation data.

4.4. Transport diffusivity sensitivity to equation of state

All of the transport diffusivities reported thus far have
been calculated using Darken’s equation. We evaluated the
thermodynamic partial derivative appearing in the Darken
equation using the Lennard–Jones equation of state. In
Figs. 10 and 11, we examine the effect of the equation
of state on the transport diffusivity. We choose as our
self-diffusivities that feed into the Darken equation the aver-
age of the self-diffusivities from the microcanonical, canon-
ical, and isobaric–isothermal ensembles. In these plots, the
temperature and the density are fixed. The pressure varies as
was shown inFig. 2. In Fig. 10, we plot the thermodynamic
factor in the Darken equation for four different equations
of state: the ideal gas EOS, the van der Waals EOS, the
Peng–Robinson EOS, and the Lennard–Jones EOS. We see
that the equation of state does play a significant role in
determining the thermodynamic factor of a high pressure
mixture. In Fig. 11, we observe the effect that the choice
of equation of state has on the transport diffusivity. The
concavity of the transport diffusivity with respect to com-
position is a function of the equation of state. With the ideal

gas, where the thermodynamic factor is unity, the second
derivative of the transport diffusivity with respect to mole
fraction is negative. However, because the other three equa-
tions of state have thermodynamic factors, which deviate
sufficiently below unity, they cause a net positive concavity.

5. Conclusions

In this work, we have conducted extensive molecular dy-
namics simulations of a mixture of methane and ethane at
high pressures. We have used the simulations, in conjunction
with the Darken equation and the Lennard–Jones equation
of state, to determine the transport diffusivity and its func-
tional dependence on composition, density, pressure, and
temperature. While the Darken equation is an approximate
relation and while the use of an equation of state adds a
second approximation, this method has the advantage that it
can deliver a statistically reliable transport diffusivity with a
single equilibrium simulation. We have found that by using
mixing rules for the critical properties, one can use exist-
ing correlations and corresponding states charts to predict
the self-diffusivities and transport diffusivities to within less
than 10%.

We have demonstrated that careful simulations in the mi-
crocanonical, canonical, and isobaric–isothermal ensemble
yield the same thermodynamic and transport properties. We
have also demonstrated that equilibrium simulations with
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more molecules than is typically used are required in order
to obtain a statistically significant composition dependence
of the transport diffusivity.

It is our intention to present follow up of this investiga-
tion with a discussion of the composition dependence of the
transport diffusivity obtained from many simulations yield-
ing phenomenological coefficients. At that point, we will be
able to comment on the validity of the Darken equation for
mixtures of small, nonpolar molecules at high pressure.
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